

Energy Policy, Carbon Emissions and Global Trade

Dominique van der Mensbrugghe Director of the Center for Global Trade Analysis

Farm Policy Study Group

December 9, 2014

Beck Agricultural Center, Purdue University

Outline

- Energy needed for growth and economic well-being
- Conventional energy use is leading to rising atmospheric concentrations of greenhouse gases and is very likely leading to global climate change
- Global energy policies are highly distortionary
 - Vary significantly across countries, end-users and energy carriers
 - Affect competitiveness and trade
 - And have macro-economic consequences
- Taxes on commodities should have clear objectives
 - Local and global emissions, health, congestion, other externalities
- Cooperative solutions lead to efficient outcomes

Industrial revolution ended a lengthy period of dismal growth

Tight link between GDP, energy and CO₂ emissions

Global CO₂ emissions from fossil fuels and industrial processes and GDP

Population and GDP growth main drivers of emissions growth

Decomposition of the Change in Total Annual CO₂ Emissions from Fossil Fuel Combustion by Decade

Source: Intergovernmental Panel on Climate Change (IPCC) 2014, WGIII, SPM (http://www.ipcc.ch/report/graphics/index.php?t=Assessm

(http://www.ipcc.ch/report/graphics/index.php?t=Assessm ent%20Reports&r=AR5%20-%20WG3&f=SPM, accessed 5-Dec-2014.)

$$Emi = Pop \times \underbrace{\left(\frac{GDP}{Pop}\right)}_{\text{Per capita income}} \times \underbrace{\left(\frac{NRG}{GDP}\right)}_{\text{Energy intensity of output}} \times \underbrace{\left(\frac{Emi}{NRG}\right)}_{\text{Carbon intensity of energy}}$$

Other sources of greenhouse gas emissions are also prominent

Greenhouse gas emissions, GtCO2e

Rapid growth of emission for electricity, heat and industry

Rising measurement of atmospheric concentration of CO₂ (and other greenhouse gases)

Recent decades warmest since the 1850's

Energy subsidies high in developing countries

High fiscal costs and inefficient use of resources

OECD countries tax mostly transport

Note: 6.12€/GJ ≈ \$1/Gallon

Source: OECD 2013. Taxing energy: a graphical analysis.

Wide dispersion in transport taxes, less on other energy uses

Energy trade has macroeconomic impacts

Social cost of carbon

• Emissions:

• 2.88TCO₂/TOE (average for refined oil) → 0.00899TCO₂/gallon

Carbon tax implications

- Carbon tax is an excise tax, percent impact depends on end-user price of energy, i.e. likely to have greater impact in the US than in Europe or Japan where energy prices are higher.
- Impact is higher on coal-based electricity (more emissions per unit of energy) and less on natural gas-based electricity.

Carbon tax (\$/TCO ₂)	Cost per gallon
\$10	9¢
\$50	45¢
\$100	90¢

Carbon tax and trade

- The carbon tax rises with the level of ambition (R)
- The carbon tax is higher if initial energy prices are high (P)
- The carbon tax is higher if the initial energy system is clean (ρ)
- The carbon tax is higher if economy is less flexible (σ)

$$\tau = \frac{P}{\rho} \left[\left(1 - R \right)^{-1/\sigma} - 1 \right]$$

Implications

- Carbon tax (for same level of ambition) will be higher in Europe/Japan than in the US, and will be higher in the US than in developing countries
- A uniform level of ambition with no 'carbon' trading, will lead to changes in relative competitiveness and therefore trade.

Carbon tax and cooperation

Implications of 'go-it-alone' on carbon tax policy

Emissions 'leakage'

Aggregate estimates are around 10%--can be higher by sector

Border tax adjustments

- Raise tariffs on 'carbon embedded' in imported goods
 - Which technology to use? How to monitor?
- Can help with domestic competitiveness, may lower even further competitiveness on other markets

Conclusion

- Energy and growth are tightly linked
 - Strong role nonetheless for energy efficiency improvement
- Energy markets are huge
 - Taxes/subsidies influence efficient use of energy, competitiveness and investment decisions
 - Also influence macroeconomic indicators (for example exchange rates)
- De-carbonization of energy use will be necessary to reduce emissions of greenhouse gases
 - Will require an optimal mix of existing and new technologies
 - Will be less costly if it entails international cooperation